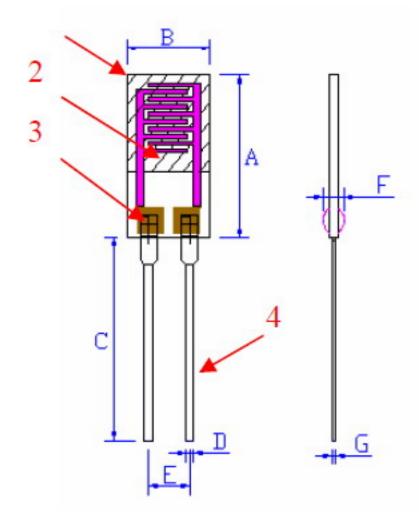

### 1 Description

This product specification is applied to the Humidity Sensor Type HCZ – D5. The terminal electrode material uses Lead free solder (Sn/Ag/Cu). This product is conformity with RoHS directive which means that lead, cadmium, mercury, hexavalent chromium and specific bromine-based flame retardants have not been used.

### 2 Applications


The applications of the component are used in relative humidity measurement, control and display. There are many end products can be used. For example air conditioner, humidifier, dehumidifier, hygrometer, recorder, transmitter...etc.

### 3 Model no.



# 4 Configuration & main parts

# 4.1 Configuration



| Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Specification |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 ± 0.2      |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 ± 0.2       |
| С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 ± 2        |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5           |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.54          |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8max        |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25          |
| N. Contraction of the Contractio | ¥             |

Units: mm

# 4.2 Main parts:

| No. | Parts            | Reference       |
|-----|------------------|-----------------|
| 1   | Sensor case      | ABS             |
| 2   | Substrate        | Alumina         |
| 3   | Sensing material | Polymer         |
| 4   | Electrode        | Ag/Carbon       |
| 5   | Lead frame       | Phosphor bronze |

#### 5 Electrical characteristics:

#### 5.1 General Characteristics:

|                                     | Units | Min. | Тур. | Max. |
|-------------------------------------|-------|------|------|------|
| Rated voltage                       | Vrms  | -    | -    | 1    |
| Rated power                         | mA    |      | _    | 0.2  |
| Operating frequency range           | kHz   | 0.5  | 1    | 2    |
| Operating temperature range         | °C    | 0    | -    | 60   |
| Operating humidity range            | %RH   | -    | -    | 90   |
| Impedance range at 60%RH and 25°℃** | kΩ    | 19.8 | -    | 50.2 |
| Humidity accuracy                   | %RH   | -5   | -    | +5   |
| Hysteresis (40%RH~80%RH)            | %RH   | -    | -    | 2    |
| Temperature dependence(reference)   | %RH/℃ |      | 0.3  | _    |

<sup>\*\*</sup> Measurement by LCR meter at 1KHz, 1 Vrms(sine wave)

# 5.2 Relative humidity - Impedance – 25°C, 1kHz, 1 Vrms(sine wave)

| %RH        | 20    | 30    | 40  | 50 | 60 | 70   | 80  | 90  |
|------------|-------|-------|-----|----|----|------|-----|-----|
| Normal     | 6,300 | 1,400 | 310 | 87 | 31 | 11.8 | 4.8 | 2.0 |
| value (kΩ) | 0,300 | 1,400 | 310 | 01 | 31 | 11.0 | 4.0 | 2.0 |

5.3 Relative humidity - Impedance curve is shown in page 5

## 6 Mechanical characteristics:

| No. | Item                 | Description                         | Criteria*    |
|-----|----------------------|-------------------------------------|--------------|
| 6.1 | Shock resistance     | Drop down 3 times@75cm              | No abnormal  |
|     |                      |                                     | appearance & |
|     |                      |                                     | electrical   |
|     |                      |                                     | properties   |
| 6.2 | Vibration resistance | 2 hours each in the directions of   | No abnormal  |
|     |                      | X-Y-Z, at the frequency of 10-55Hz, | appearance & |
|     |                      | and amplitude of 1.5mm              | electrical   |
|     |                      |                                     | properties   |
| 6.3 | Resistance to        | The lead terminal shall be Immersed | No abnormal  |
|     | soldering heat       | by 3 mm from the substrate for 3    | appearance & |
|     |                      | seconds in solder bath of 260±5℃    | electrical   |
|     |                      |                                     | properties   |
| 6.4 | Strength of          | 500g@10 seconds in the axial        | Secured      |
|     | terminations         | direction of lead terminal          |              |

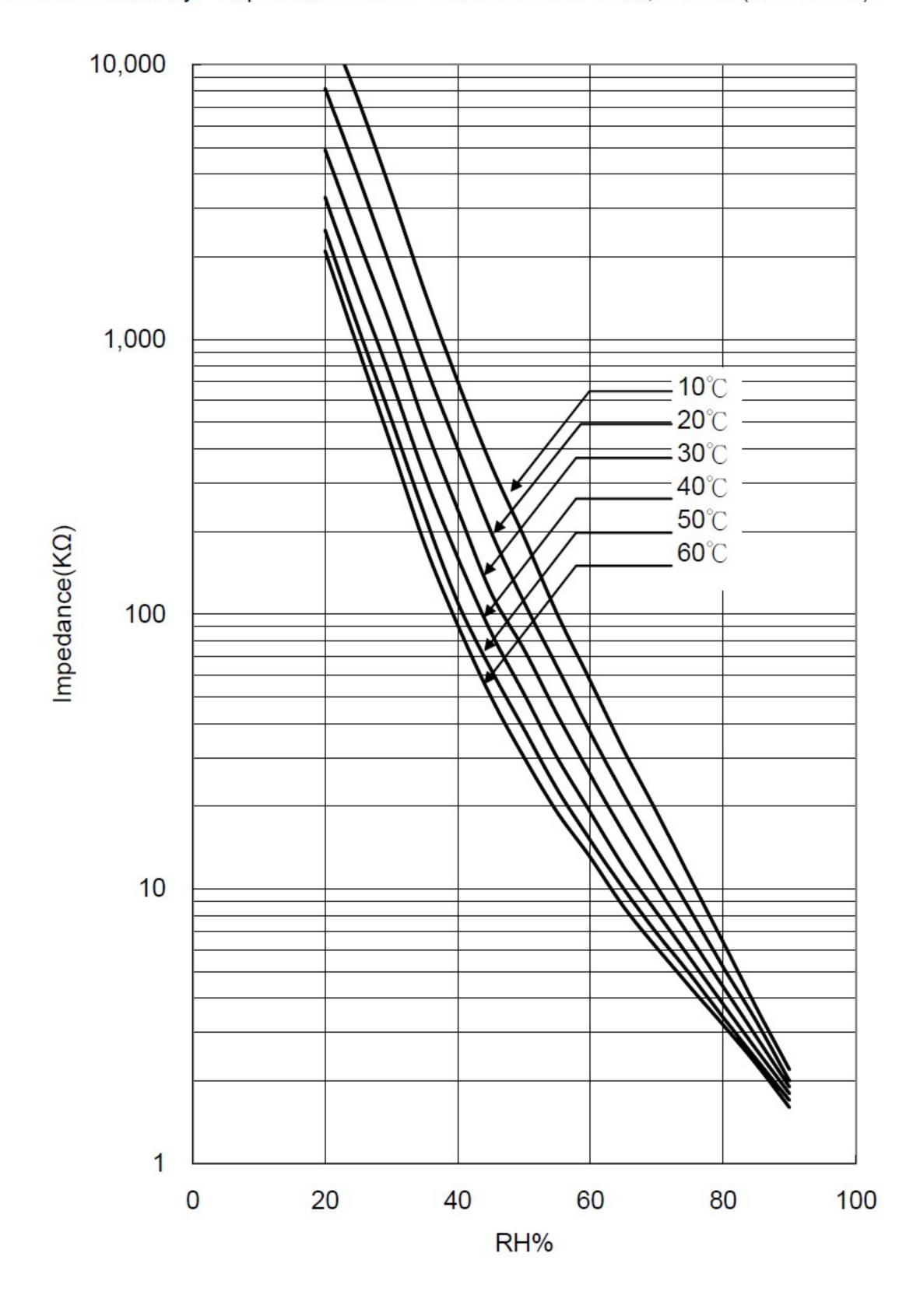
# 7 Reliability:

| No. | Item                | Description             | Criteria* |
|-----|---------------------|-------------------------|-----------|
| 7.1 | Heat resistance     | 1000 hours@70°C         | < ±5%RH   |
| 7.2 | Cool resistance     | 1000 hours@-30°C        | < ±5%RH   |
| 7.3 | Humidity resistance | 1000 hours@40°C, 90%RH  | < ±5%RH   |
| 7.4 | Humidity cycle      | Repeat 500 cycles       | < ±5%RH   |
|     |                     | One cycle:              |           |
|     |                     | 30 minutes@25°C, <30%RH |           |
|     |                     | 30 minutes@25°C, >90%RH |           |
| 7.5 | Temperature cycle   | Repeat 100 cycles       | < ±5%RH   |
|     |                     | Each cycle:             |           |
|     |                     | 30 minutes@-30°C        |           |
|     |                     | 30 minutes@85°C         |           |
| 7.6 | Voltage resistance  | 3000 hours@1KHz, 1Vrms  | < ±5%RH   |

<sup>\*</sup> The criteria test that the sensors finish the description process after 2 hours under normal temperature and humidity. The test condition is fixed at 25℃, 60%RH by LCR meter at 1KHz, 1 Vrms(sine wave)

## 8 Packaging:

- 8.1 HCZ-D5
  - 8.1.1 245 pieces were layed in tray, and 5 trays envelope in bag.
  - 8.1.2 10,000 pieces packed in a shipping carton box (430\*360\*390mm).
  - 8.1.3 In case of fractional package, the above tray and carton box may not be used.
- 8.2 Caution remarks on operation:
  - 8.2.1 To avoid direct application of DC voltage on humidity sensor.
  - 8.2.2 To protect sensor from dewfall and drenching.
  - 8.2.3 To avoid any operation of humidity sensors in the following environmental ambient.
    - 8.2.3.1 Salt
    - 8.2.3.2 Inorganic gas Sulfide dioxide, Chlorine, Ammonia etc.
    - 8.2.3.3 Organic gas Alcoholic, Glycols, Aldehydes etc.
  - 8.2.4 Recommended storage condition


Temperature range 10~40°C

Humidity range 90%RH or less

8.2.5 Do not store humidity sensors long period of time in an over 60%RH ambient due to some occasion of degradation on sensor housing case.

## REFERENCES

Relative humidity - Impedance curve – measured at 1kHz, 1 Vrms(sine wave)



# Impedance -- %RH VS. Temperature

## Unit:KΩ

|     | 3      | 80 80       | 0           | 15          |       | 35    |             | 38    | 72          |             | 22          |             |
|-----|--------|-------------|-------------|-------------|-------|-------|-------------|-------|-------------|-------------|-------------|-------------|
| RH% | 5℃     | <b>10</b> ℃ | <b>15</b> ℃ | <b>20</b> ℃ | 25℃   | 30°C  | <b>35</b> ℃ | 40°C  | <b>45</b> ℃ | <b>50</b> ℃ | <b>55</b> ℃ | <b>60</b> ℃ |
| 20  |        | 15,000      | 11,000      | 8,200       | 6,300 | 4,900 | 4,000       | 3,300 | 2,800       | 2,500       | 2,200       | 2,100       |
| 25  | 10,000 | 7,400       | 5,300       | 3,900       | 3,000 | 2,300 | 1,800       | 1,500 | 1,300       | 1,100       | 1,000       | 920         |
| 30  | 4,800  | 3,400       | 2,400       | 1,800       | 1,400 | 1,100 | 870         | 710   | 600         | 510         | 450         | 410         |
| 35  | 2,100  | 1,500       | 1,100       | 820         | 630   | 490   | 390         | 320   | 270         | 230         | 200         | 180         |
| 40  | 980    | 700         | 520         | 400         | 310   | 240   | 190         | 160   | 130         | 110         | 100         | 91          |
| 45  | 480    | 350         | 260         | 200         | 160   | 120   | 100         | 86    | 73          | 63          | 55          | 50          |
| 50  | 250    | 190         | 140         | 110         | 87    | 74    | 61          | 51    | 44          | 38          | 34          | 30          |
| 55  | 130    | 100         | 80          | 64          | 49    | 43    | 36          | 30    | 26          | 23          | 21          | 19          |
| 60  | 73     | 57          | 46          | 37          | 31    | 26    | 22          | 19    | 17          | 15          | 14          | 13          |
| 65  | 41     | 32          | 27          | 22          | 19    | 16    | 14          | 12    | 11          | 10          | 9.2         | 8.6         |
| 70  | 23     | 19          | 16          | 14          | 11.8  | 10.2  | 9.1         | 8.2   | 7.5         | 6.9         | 6.5         | 6.1         |
| 75  | 13     | 11          | 9.5         | 8.4         | 7.5   | 6.7   | 6.1         | 5.6   | 5.2         | 4.9         | 4.6         | 4.4         |
| 80  | 7.2    | 6.4         | 5.8         | 5.2         | 4.8   | 4.4   | 4.1         | 3.8   | 3.6         | 3.4         | 3.3         | 3.2         |
| 85  | 4.0    | 3.7         | 3.5         | 3.3         | 3.0   | 2.9   | 2.8         | 2.6   | 2.5         | 2.4         | 2.4         | 2.3         |
| 90  | 2.2    | 2.2         | 2.1         | 2.0         | 2.0   | 1.9   | 1.8         | 1.8   | 1.7         | 1.7         | 1.7         | 1.6         |